Fundamental Practices in Nuclear Medicine: How Radiation Saves People?

  June 14, 2021   Read time 2 min
Fundamental Practices in Nuclear Medicine: How Radiation Saves People?
The medical use of radioactive isotopes and radiation falls broadly into two categories: diagnostic and therapeutic. Medical practitioners also classify diagnostic procedures using radioisotopes and radiation as either radiology (when the radiation source is external to the body) or nuclear medicine.

Both diagnostic procedures involve the use of relatively small amounts of radioactive materials or ionizing radiation to facilitate imaging of a suspected medical problem. Scientists produce medical radioisotopes in certain types of nuclear reactors or using special nuclear particle accelerators. Radiology generally involves the use of X-ray machines as the external source of ionizing radiation for medical imaging.

People often confuse nuclear medicine with other imaging procedures, including general (X-ray-based) radiology, computed tomography (CT), and magnetic resonance imaging (MRI) procedures. In modern medicine, physicians might use some or all these techniques to care for a patient. In general, nuclear medicine provides detailed information about the structure and functioning of internal body organs, in contrast to conventional radiology, which uses X-rays to create structural images (especially bone) based upon anatomy. Often, nuclear medicine provides physicians with an accurate, noninvasive measure of the degree of function present in an organ—avoiding the need for exploratory surgery and the postoperative complications that often accompany such invasive procedures.

Physicians frequently use nuclear medicine procedures to detect and treat a disease early in its course, when there is a higher probability of success. Nuclear medicine provides special ways to assess the function of a damage heart or the restriction of blood flow to parts of the brain. Nuclear medicine also provides physicians a noninvasive way to assess the status of other body organs, including the kidneys, the liver, and the thyroid gland, quantitatively. Two common examples of nuclear medicine involve the use of technetium-99m to diagnose bone or heart problems and radioactive iodine in the imaging of the thyroid gland. How prevalent is nuclear medicine?

According to the U.S. Nuclear Regulatory Commission, about one-third of all patients admitted to hospitals in the United States are diagnosed or treated using radioactive isotopes. Involved in about 80 percent of all nuclear diagnostic procedures performed in the United States, technetium-99m is the most commonly used medical radioisotope. The penetrating properties of its gamma rays and its relatively short (6-hour) half-life, accommodate a thorough in vivo study while minimizing the risk to the patient that would occur from more prolonged internal exposure to ionizing radiation.


  Comments
Write your comment